
SQLModel
aEasier state-of-the-art REST 

API Data Modeling in Python

Anthony Holten
Sr. Software Enginer @ Interos



REST 

API

Data 

Store

Your 

Program

Their 

Program

REpresentational State Transfer (REST) is 
one of the most common architectures for 
interacting with a data store over HTTP

Response

I/O

Request

Re
qu
es
t

Re
sp
on
se

A RESTful System



API 

Framework

Relational 

DB

Web 

Interface

Process 

Automation Dynamic Querying: eg. a shopping on an 
e-commerce site

Response

SQL

Request

Re
qu
es
t

Re
sp
on
se

A Common Design 

Programmatic Integration: eg. a flight 
comparison site, Internet of Things



Python 

FastAPI
PostgreSQL 

database

SQL

You could 
template SQL…

Or you could 
use an Object 

Relation 
Mapper…

Either way, 
you’ll want 
to format 

and validate 
data



Python 

FastAPI
PostgreSQL 

database

SQL

You could 
template SQL…

Or you could 
use an Object 

Relation 
Mapper…

Either way, 
you’ll want 
to format 

and validate 
data(Django, 

SQLAlchemy, 
Marshmallow)

(native, 
Jinja, Mako)

(natively, 
Pydantic)



A Pydantic 
class

A SQLAlchemy 
class 

How do I validate 
Python objects?

How do I turn a 
relation into a 
python object?



BIG Changes in 2023
Pydantic 

v2
SQLAlchemy 

v2

How long is 
the docs 

page about 
the update?

Over a 
1-hour 
read!

Over a 20 
minute 
read!

June 30, 2023 January 26, 2023



SQLModel
aEasier state-of-the-art REST 

API Data Modeling in Python



Pydantic 
v2

Write one 
SQLModel class

Support added 
v0.0.14

December 4, 2023 

Support added 
v0.0.14

November 18, 2023 

SQLModel
unifies 
both

SQLAlchemy 
v2



-

- Some of the latest ORM innovations 
- Some of the latest data model validation innovations
- Turning your data class mapping into a table is as easy 

as setting kwarg table=true*
- * Except for when you have lots of special 

instructions to SQLAlchemy
- Can map your data once instead of twice

- DRYer code -> less maintenance
- DRYer code -> faster iteration

- FastAPI compatibility is top of mind

SQLModel







How do I know 
if SQLModel is 
right for me?

A streamlined mapping syntax 

Many arbitrary shared 
fields across models

Less library-specific code 
concepts, less SQL, more 
pythonic, more abstract

If you 
like…

If you 
like…

If you 
have..


